Question Sheet 1, Limits I.

1. When verifying the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)=L$ you need to know the value of the limit, L, in advance. This question is about finding L. Without detailed proofs evaluate the following limits.
i) $\lim _{x \rightarrow 1} \frac{x^{2}-x-2}{x+1}$
ii) $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1}$
iii) $\lim _{x \rightarrow 1}\left\{\frac{1}{x-1}-\frac{2}{x^{2}-1}\right\}$
iv) $\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}$.
v) $\lim _{x \rightarrow 2} \frac{\frac{1}{2}-\frac{1}{2}}{x-2}$.
vi) $\lim _{t \rightarrow 8} \frac{8-t}{2-\sqrt[3]{t}}$.

Hint: In part (iv) use the important identity

$$
a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})
$$

for all $a, b \geq 0$. This follows from the "difference of squares" formula

$$
x^{2}-y^{2}=(x-y)(x+y)
$$

with $a=x^{2}$ and $b=y^{2}$.
For part (vi) use a similar result based on

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) .
$$

2. Consider the following Rough Work when trying to verify the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow 2} x^{2}=4$.

Assume $0<|x-2|<\delta$. Consider

$$
|f(x)-L|=\left|x^{2}-4\right|=|(x-2)(x+2)|<\delta|x+2| .
$$

Assume $\delta \leq 1$ so $0<|x-2|<\delta \leq 1$, i.e. $-1<x-2<1$ and thus $3<x+2<5$. For then

$$
\left|x^{2}-4\right|<\delta|x+2|<5 \delta
$$

which we want $\leq \varepsilon$. Hence choose $\delta=\min (1, \varepsilon / 5)$.
Question What do we get for δ if we replace the requirement $\delta \leq 1$ by
i) $\delta \leq 100$ or
ii) $\delta \leq 1 / 100$?

Limits of Cubic Polynomials

In the next four questions we look at limits of cubic polynomials. There are so many questions because I want to highlight different aspects of the quadratic polynomial which arises.
3. i) Factorise $x^{3}-8$ into a linear and a quadratic factor.
ii) Bound, from above,

$$
\left|x^{2}+2 x+4\right|
$$

on the interval $1<x<3$.
iii) Show that the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} x^{3}=8
$$

is satisfied if we choose $\delta=\min (1, \varepsilon / 19)$ given $\varepsilon>0$.
4. Given $\varepsilon>0$ find a $\delta>0$ that verifies the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 3} x^{3}=27
$$

5. i) Factorise $x^{3}-6 x-4$.
ii) Bound, from above, $\left|x^{2}-2 x-2\right|$ on the interval $|x+2|<1$.
iii) Verify the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow-2}\left(x^{3}-6 x-2\right)=2
$$

i.e. given $\varepsilon>0$ find a $\delta>0$ for which the definition is satisfied.
6. i) Factorise $x^{3}-4 x^{2}+4 x-1$.
ii) Bound from above $\left|x^{2}-3 x+1\right|$ on the interval $0<|x-1|<1$.
iii) Verify the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 1}\left(x^{3}-4 x^{2}+4 x+1\right)=2
$$

i.e. given $\varepsilon>0$ find a $\delta>0$ for which the definition is satisfied.

Limits of Rational Functions

In the next two questions we take a result $\lim _{x \rightarrow a} f(x)=L$ and examine

$$
\lim _{x \rightarrow a} \frac{f(x)-L}{x-a},
$$

for this gives examples of limits of rational functions which are not defined at the limit point.
7. (Based on Question 3.iii). i) Calculate, without proof,

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}
$$

ii) Fully factorise the polynomial

$$
x^{3}-12 x+16
$$

iii) Prove the value found in Part i is correct by verifying the $\varepsilon-\delta$ definition of limit.
8. (Based on Question 5.) i) What is the value of

$$
\lim _{x \rightarrow-2} \frac{x^{3}-6 x-4}{x+2} ?
$$

ii) Prove your result by verifying the $\varepsilon-\delta$ definition of this limit.

In the previous two questions we have looked at the limits of rational functions at a point where the function is not defined. Now we look at examples where the rational function is well-defined at the limit point.
9. i) Show that

$$
\frac{3}{4}<\frac{x+2}{x+3}<\frac{5}{6}
$$

for $1<x<3$.
ii) Show that the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{x+3}=2
$$

can be verified by the choice of $\delta=\min (1,6 \varepsilon / 5)$.
10. Evaluate

$$
\lim _{x \rightarrow 2} \frac{x^{2}-2 x-12}{x+2}
$$

and verify the $\varepsilon-\delta$ definition of the limit.

Finally

11. Why must any $\delta>0$ used to verify the $\varepsilon-\delta$ definition of the limit of \sqrt{x} as $x \rightarrow 9$ satisfy $\delta \leq 9$?

Given $\varepsilon>0$ find a $\delta>0$ for which the definition of

$$
\lim _{x \rightarrow 9} \sqrt{x}=3
$$

is satisfied.
Hint Use the Hint to Question 1.

